Acceleration Testing (sometimes called Constant Acceleration Testing) applies a constant or steady inertial load to a product. Constant acceleration testing is performed to verify that components can withstand exposure from inertial stresses such as would be experienced in aircraft, missiles, etc.
Continue reading Acceleration Testing Using a Centrifuge →
This is part nine article in a series of product reliability testing blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing Services page and our other MIL-STD-810 vibration testing blog articles.
This is part eight of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing services page and our other MIL-STD-810 vibration testing blog articles:
This is part seven of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing services page and our other MIL-STD-810 vibration testing blog articles:
This is part five of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing services page and our other MIL-STD-810 vibration testing blog articles:
This is part four of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing services page and our other MIL-STD-810 vibration testing blog articles:
This is part three of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing servicespage and our other MIL-STD-810 vibration testing blog articles:
This is part of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out our Vibration Testing services page and the other blog posts in this series,
Procedure I (General Vibration), Category 9 of Method 514.7 Vibration testing details the vibration profile of cargo carried in helicopters. This vibration profile is unique because it superimposes strong narrowband peaks of sinusoidal vibration caused by rotating components such as the main or tail rotors, over low-level wideband random vibration caused by aerodynamic flow. This vibration profile is generally referred to as Sine on Random Vibration Testing. Figure 1 outlines the typical vibration profile and the variables which are determined based upon the type of helicopter as well as the location on the helicopter where your product will be used or stored. Tables 1 and 2 define the equations and properties used to determine the variables used in the Figure 1 plot.
For over 30 years, Delserro Engineering Solutions (DES) has been an industry-wide leader in the field of product reliability testing. DES is currently seeking an experienced quality engineer or a test engineer.
Responsibilities of this position include:
Setting up and performing tests
Writing procedures and test reports
Have a thorough understanding of test equipment such volt meters, power supplies, data acquisition systems, test chambers & vibration/shock equipment
Working within the requirements of ISO/IEC 17025 and DES’s operating policies
Understanding and following detailed instructions, test standards and specifications
Additional requirements of this position include:
Must be a US citizen
Proficient with Microsoft Office products
Able to effectively communicate
Able to meet deadlines and multitask
Able to lift 50 pounds without stress
Must be a team player and work well with group activities
Experience with the following is a plus:
ISO 17025 Quality Management System
Previous work experience in a test lab environment
Operation of instrumentation, temperature chambers, & vibration/shock test equipment
Test methods such as HALT, temperature & humidity testing, vibration & shock testing, reliability and durability testing
Test standards such as MIL-STD-810, RTCA DO-160 & ISO 60068
This is part two of a series of blog posts concerning the MIL-STD 810 Vibration Section. This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014. DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test. For more information, please check out Part 1 – MIL-STD-810 Vibration Testing Overview blog and our Vibration Testing services page.
Category 4 of Method 514.7 Vibration testing details the transportation random vibration environmental conditions from cargo interaction with vehicle suspension and structures with road and surface discontinuities. “This environment may be divided into two phases, truck transportation over US highways, and mission/field transportation. Mission/field transportation is further broken down into two-wheeled trailer and wheeled vehicles categories.”
Truck Transportation over US Highways Vibration Testing
This vibration test method is used when products or equipment will be transported by large trucks tractor-trailers commonly seen on US highways. The truck transportation over US highways random vibration profile is designed to simulate 1609 km (1000 miles) on interstate highways. The random vibration profile along each axis can be seen in the plot below in Figure 1. The length of this profile is 60 minutes per axis for each 1000 miles of transportation. For example to simulate 2000 highway miles, the vibration test duration would be 2 hours per axis x 3 axes = 6 hours total.