Environmental & Climatic Testing – Delserro Engineering Solutions https://www.desolutions.com/blog Product Reliability & Vibration Testing Since 1982 Wed, 27 Mar 2024 14:49:16 +0000 en-US hourly 1 https://wordpress.org/?v=5.6.13 MIL-STD-810 High Temperature Testing https://www.desolutions.com/blog/2024/03/mil-std-810-high-temperature-testing/ https://www.desolutions.com/blog/2024/03/mil-std-810-high-temperature-testing/#respond Mon, 25 Mar 2024 14:32:33 +0000 https://www.desolutions.com/blog/?p=3406 Explore MIL-STD 810 Method 501 High Temperature Testing procedures and typical failures. DES is your trusted choice for MIL-STD-810 compliance.

The post MIL-STD-810 High Temperature Testing appeared first on Delserro Engineering Solutions.

]]>

MIL-STD 810, Method 501 High Temperature Testing is used to evaluate the effects of high temperature conditions on performance, materials, and integrity.  Method 501 is applicable for temperature testing products that are deployed in areas where temperatures (ambient or induced) are higher than standard ambient.  Note, the latest revision of this method is 501.7 from MIL-STD-810H.

Method 501 is limited to evaluating the effects of relatively short-term (months, as opposed to years), even distributions of heat throughout the test item. This method is not typically practical for evaluating materials where solar radiation produces thermal gradients or photochemical effects.  Method 505 is used to test the effects of solar radiation.  It is also not practical to evaluate degradation that occurs from continuous long-term exposure to high temperatures where synergetic effects may be involved.

The following are typical failures that could occur from products used in high temperature environments.

  • Parts bind from the differential expansion of dissimilar materials.
  • Lubricants become less viscous; joints lose lubrication by the outward flow of lubricants.
  • Materials change in dimension.
  • Packing, gaskets, seals, bearings, and shafts become distorted, bind, and fail causing mechanical failures.
  • Gaskets display permanent sets.
  • Closure and sealing strips deteriorate.
  • Fixed-resistance resistors change in values.
  • Electronic circuit stability varies with differences in temperature gradients and differential expansion of dissimilar materials.
  • Transformers and electromechanical components overheat.
  • Operating/release margins of relays and magnetic or thermally activated devices alter.
  • Shortened operating lifetimes.
  • High pressures are created within sealed cases (batteries, etc.).
  • Discoloration, cracking, or crazing of organic materials.
  • Out-gassing of composite materials or coatings.
  • Failure of adhesives.

MIL-STD-810 Method 501 Tests: High Temperature Procedures

  1. Procedure I – Storage.  Procedure I is for testing products that are stored at high temperatures.  After the high temperature storage test is completed, an operational test at ambient conditions is performed.  Procedure I can be either a cyclic temperature test or a constant temperature test. 
  2. Procedure II – Operation.  Procedure II is used to investigate how high temperatures could affect the performance of items while they are operating.  Temperature Procedure II can be performed as either a cyclic temperature test or a constant temperature test. 
  3. Procedure III – Tactical-Standby to Operational.  This temperature procedure evaluates the material’s performance at normal operating temperatures after being presoaked at high non-operational temperatures.  An example of Procedure III is a product that is stored in an enclosed environment that develops high internal temperatures before being removed and then operated in a relatively short period of time.

What is the procedure for MIL-STD-810 High Temperature Testing? 

First, identify the high temperature levels, test conditions, and applicable procedures. DES can help determine the appropriate temperature ramp rates and durations of the tests based on the equipment’s intended use and the operating environmental conditions.  Consider the following climatic temperatures from Table 501.7-I. (MIL-STD-810H):

Design TypeLocationAmbient Air oC (oF)Induced2 oC (oF)
Basic Hot (A2)Many parts of the world, extending outward from the hot dry category of southwestern United States, northwestern Mexico, central and western Australia, Saharan Africa, South America, Southern Spain, and southwest and south central Asia.30 – 43

(86 – 11)
30 – 63

(86 – 145)
Hot Dry (A1)Southwest and south central Asia, southwestern United States, Saharan Africa, central and western Australia, and northwestern Mexico.32 – 49

(90 – 120)
33 – 71

(91 – 160)
Table 501.7-I from MIL-STD-810H

Next, determine whether a constant temperature test or a cyclic temperature test is appropriate.  Constant temperature testing is used only for items situated near heat-producing equipment or when it is necessary to verify the operation of an item at a specified constant temperature.  The duration for constant temperature test temperature is at least two hours following test specimen stabilization.

For cyclic exposure, there are two 24-hour cyclic profiles contained in Tables 501.7-II and 501.7-III.  The number of cycles for the Procedure I storage test is a minimum of seven to coincide with the one percent frequency of occurrence of the hours of extreme temperatures during the most severe month in an average year at the most severe location.   The minimum number of cycles for the Procedure II operational testing is three. This number is normally sufficient for the test item to reach its maximum response temperature.

You can trust the DES MIL-STD-810 High Temperature Testing lab

Advantages with DES : 

  • DES is A2LA accredited to MIL-STD-810, Method 501 High Temperature Testing
  • DES has extensive experience running MIL-STD-810 Method 501.7 high temperature Tests
  • DES has multiple temperature chambers capable of performing MIL-STD-810 high temperature compliance testing

Contact us today to to discuss testing your product in our MIL-STD-810 accredited Test Laboratory. 

The post MIL-STD-810 High Temperature Testing appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2024/03/mil-std-810-high-temperature-testing/feed/ 0
Medical Device Industry: Producing Reliable Products https://www.desolutions.com/blog/2024/01/medical-device-industry-producing-reliable-products/ https://www.desolutions.com/blog/2024/01/medical-device-industry-producing-reliable-products/#respond Thu, 25 Jan 2024 17:03:30 +0000 https://www.desolutions.com/blog/?p=3352 In the fast-evolving medical device industry, the pathway to market success is marked by stringent standards. Delserro Engineering Solutions (DES) plays a pivotal role in this journey, offering expert testing services for both medical devices and their packaging. Recognizing that each product—from intricate surgical instruments to complex diagnostic machinery—requires rigorous scrutiny, DES employs cutting-edge environmental, …

Continue reading Medical Device Industry: Producing Reliable Products

The post Medical Device Industry: Producing Reliable Products appeared first on Delserro Engineering Solutions.

]]>
medical device industry showing stethoscope and other devices

In the fast-evolving medical device industry, the pathway to market success is marked by stringent standards. Delserro Engineering Solutions (DES) plays a pivotal role in this journey, offering expert testing services for both medical devices and their packaging. Recognizing that each product—from intricate surgical instruments to complex diagnostic machinery—requires rigorous scrutiny, DES employs cutting-edge environmental, vibration, HALT, and shock testing in its state-of-the-art facilities.

The comprehensive range of tests at DES is designed to address the specific challenges faced by medical devices in real-world conditions. By simulating various environmental factors and stressors, DES ensures that both the device and its packaging maintain integrity and functionality throughout their lifecycle. This attention to detail is crucial in the medical device industry where precision is paramount, and the smallest oversight can have significant consequences.

Our team delves into the nuances of each project, partnering with manufacturers to understand their unique needs and challenges. This collaborative approach allows for customized testing solutions that cater to the diverse requirements of the medical device sector.

Medical Device Testing: Meeting Rigorous Standards with DES

The field of medical device testing necessitates strict adherence to a variety of industry standards to ensure compliance. At Delserro Engineering Solutions (DES), we pride ourselves on aligning our testing services with these critical standards, assuring that medical device packaging meets the highest benchmarks of quality and reliability.

  1. ISTA Compliance for Transportation Durability: As a certified testing laboratory, we conduct packaging tests that comply with International Safe Transit Association (ISTA) standards. These tests simulate the stress that packaging undergoes during transportation, ensuring that it can protect medical devices from damage due to shock, vibration, and other environmental factors.
  2. ASTM Standards for Material Quality: Adhering to ASTM D7386 and other ASTM standards, we evaluate the material quality of packaging, assessing its durability and resilience under various conditions. These tests are crucial for determining if the packaging can maintain the sterility and integrity of medical devices.
  3. ISO/IEC 17025 Accredited Testing: Our ISO/IEC 17025 accreditation signifies our technical competence in conducting standardized tests. This includes ensuring that medical device packaging meets specific environmental testing requirements crucial for maintaining product reliability throughout its lifecycle.
  4. MIL-STD Compliance for Military-Grade Assurance: For products that require a higher level of robustness, such as those used in military applications, we ensure compliance with Military Standards like MIL-STD-810 and MIL-STD-202. This ensures that products can withstand extreme environmental conditions and rough handling.
  5. Customized Testing Protocols: Beyond standard compliance, we offer customized testing solutions tailored to unique client specifications. Whether it’s assessing the resilience of packaging or devices under specific temperature conditions or evaluating its performance under unique mechanical stresses, our state-of-the-art facilities are equipped to handle diverse testing needs.

Navigating Challenges in Medical Device Package Testing

The journey from conception to market for medical devices is fraught with challenges, particularly when it comes to packaging. At Delserro Engineering Solutions (DES), we understand that the package is a crucial component that ensures device safety and efficacy during transit and storage.

With the medical device industry facing ever-tightening regulations, manufacturers must ensure their packaging can withstand a range of environmental stresses. DES’s medical device package testing services are designed to address these exacting standards, from simulating transportation conditions to mimicking the rigors of handling and storage.

Moreover, DES’s commitment to staying ahead in an evolving industry landscape means continuously updating our medical device package testing processes in line with the latest regulations and standards. Our laboratory’s ISO/IEC 17025 and ISTA accreditation are a testament to our capability to execute tests that are both precise and reliable. We engage with the latest industry practices, ensuring that our clients’ medical device packaging is robust, compliant, and above all, safe for the end-user.

Recognizing that off-the-shelf solutions do not fit all, our engineers work closely with clients to develop specialized medical device package testing plans that match the unique needs of their products. Whether it’s fine-tuning temperature cycles to match specific geographic journeys or tailoring shock tests for delicate components, DES ensures that every aspect of packaging is scrutinized and optimized for peak performance. This meticulous attention to detail ensures that when a medical device reaches its destination, it does so with its integrity unblemished and its functionality assured.

DES embraces the challenges of medical device package testing with a blend of accredited procedures, advanced technology, and customized service. By doing so, we ensure that our clients’ products are not only compliant but exemplify the highest standards of the medical device industry. Contact us to learn more about how we can address the specific testing needs for your medical device packaging.

Proven Expertise in the Medical Device Industry at DES

At Delserro Engineering Solutions (DES), our expertise in the medical device industry is more than just a claim—it’s a commitment. With over three decades of experience, DES has established itself as a leader in providing comprehensive testing solutions for both medical devices and their packaging. Our deep understanding of medical device industry standards positions us uniquely to help our clients navigate the complexities of product testing and compliance.

Our team of skilled engineers and technicians is dedicated to delivering results that surpass expectations. At DES, we understand that the medical device industry is rapidly evolving, and staying ahead means being equipped to adapt to new challenges. We offer personalized service, working closely with our clients to understand their specific needs and providing tailored solutions that align with their goals. This partnership approach has made us a trusted name among industry giants.

In the medical device industry, where precision, quality, and reliability are non-negotiable, DES stands as a beacon of excellence. We invite you to experience the DES difference—where quality testing leads to quality products.

Contact us today to learn how our expertise can enhance the reliability and market success of your medical devices.

The post Medical Device Industry: Producing Reliable Products appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2024/01/medical-device-industry-producing-reliable-products/feed/ 0
What is the Difference Between Thermal Shock and Temperature Cycle Testing? https://www.desolutions.com/blog/2022/03/what-is-the-difference-between-thermal-shock-and-temperature-cycle-testing/ https://www.desolutions.com/blog/2022/03/what-is-the-difference-between-thermal-shock-and-temperature-cycle-testing/#respond Tue, 29 Mar 2022 07:56:00 +0000 https://www.desolutions.com/blog/?p=2909 Our customers often ask, What is the Difference Between Thermal Shock and Temperature Cycle Testing?  Both types of tests expose products to cycles between hot and cold temperatures.  Both tests produce stresses caused by thermal expansion and contraction.  In many cases, components expand and contract differently.  This creates cumulative fatigue damage during each cyclic, which …

Continue reading What is the Difference Between Thermal Shock and Temperature Cycle Testing?

The post What is the Difference Between Thermal Shock and Temperature Cycle Testing? appeared first on Delserro Engineering Solutions.

]]>
Our customers often ask, What is the Difference Between Thermal Shock and Temperature Cycle Testing?  Both types of tests expose products to cycles between hot and cold temperatures.  Both tests produce stresses caused by thermal expansion and contraction.  In many cases, components expand and contract differently.  This creates cumulative fatigue damage during each cyclic, which could result in a fatigue failure.

Thermal shock exposes devices to rapid temperature changes greater than 15°C/minute.  Temperature cycle testing uses a transition rate less than 15°C/minute and is usually between 1 to 10°C/minute from our experience. 

Examples of sources where thermal shock may occur are:

  • Rapid changes in environment such as transfer of items between a temperature controlled environment to an outdoor extreme temperature
  • Sudden change when starting equipment that was stored outside in an artic climate
  • Sudden large internal power changes
  • Ascent from a high temperature ground environment to high altitude

Examples of sources where slower thermal cycles may occur are:

  • Powering electronics on and off in a controlled environment
  • Slower daily outdoor temperature changes between night and day

The soak times at each hot and cold temperature vary greatly for different items.  The soak times are mainly dependent on the thermal masses of the larger components within each product.  Soak time can typically vary from 15 minutes to 2 hours.  Soak times are also dependent on whether the units are powered or unpowered during testing.  

Thermal shock failures could be different from temperature cycle failures.  Failures from thermal shock could be more of an overstress type.  Thermal shock failures on solder joints tend to be caused by tensile overstresses and tensile fatigue.  Thermal cycle failures on solder joints components are typically from shear creep fatigue and stress relaxation. 

Thermal shock testing is typically performed in a dual compartment chamber.  One compartment is for hot temperature and the other is for cold temperature.  Products are placed in a carriage that shuttles between the hot and cold compartments within seconds exposing the test item to thermal shock.  For large specimens, a single compartment chamber can be used that can perform rapid temperature changes. DES has both types of chambers.

Temperature cycle testing is performed in a single compartment chamber, either a chamber that controls only temperature or a temperature humidity chamber.  Most temperature humidity chambers can perform thermal cycling with or without adding controlled humidity.  DES conducts temperature cycle testing using both types of single compartment chambers. 

Typical test specifications include:

  • MIL-STD-202, Method 107, Thermal Shock
  • MIL-STD-810, Method 503, Temperature Shock
  • MIL-STD-883, Method 1010, Temperature Cycling
  • JESD22-A104, Temperature Cycling
  • JESD22-A105, Power & Temperature Cycling
  • IEC 60068-2-14, Change of Temperature
  • RTCA/DO-160, Section 5.0 – Temperature Variation

Delserro Engineering Solutions, Inc. (DES) has many years of experience performing thermal shock and temperature cycle testing.  We can assist you with setting up a test, choosing the proper test conditions or choosing a test specification.  Please contact us or call 610.253.6637 to find out what DES can do for you!

The post What is the Difference Between Thermal Shock and Temperature Cycle Testing? appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2022/03/what-is-the-difference-between-thermal-shock-and-temperature-cycle-testing/feed/ 0
Accelerated Temperature Humidity Testing Using the Arrhenius-Peck Relationship https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/ https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/#comments Tue, 05 Sep 2017 14:33:31 +0000 https://www.desolutions.com/blog/?p=2689 Humidity Testing can be used to accelerate the aging of products that are affected by ambient humidity levels. Increasing the humidity above the normal use level humidity can cause defects or failures to occur in shorter times than what would be observed in the field.  Humidity testing is most commonly performed along with testing at …

Continue reading Accelerated Temperature Humidity Testing Using the Arrhenius-Peck Relationship

The post Accelerated Temperature Humidity Testing Using the Arrhenius-Peck Relationship appeared first on Delserro Engineering Solutions.

]]>
Humidity Testing can be used to accelerate the aging of products that are affected by ambient humidity levels. Increasing the humidity above the normal use level humidity can cause defects or failures to occur in shorter times than what would be observed in the field.  Humidity testing is most commonly performed along with testing at elevated temperature so that the resulting acceleration factor is affected by both humidity and temperature. The Acceleration Factor (AF) which is the ratio of the life at use conditions to the accelerated life at test conditions for temperature humidity testing is given by the following Arrhenius-Peck equation:

Acceleration Factor

Humiditylow = average normal field use humidity level

Humidityhigh = test humidity level

Ea is the activation energy in electron-volts (eV)

K is Boltzmann’s constant (8.617385 x10-5 eV/K)

T is the temperature in degrees Kelvin

T1 = Field maximum temperature (°K)

T2 = Test maximum temperature (°K)

When establishing the actual test temperature-humidity level to be used, it must be realized that humidity can only be controlled up to approximately 98 °C as water will boil around 100 °C or below 5 °C as water will freeze.  Commercially available temperature humidity chambers will have limits to the temperature humidity conditions that can be controlled so that test conditions must be chosen that fall with the controllable limits of the chamber.

As an example, assume a product that has normal upper operating limits of 50 °C and 60% RH. Testing the product at 85 °C and 85% RH would result in the following acceleration factor assuming a typical activation energy of 0.7eV:

AF = [(60/85)-2.66] X [e(0.7/.00008617385)((1/323.15)-(1/358.15))] ≈ 29.5

This means that 1 test hour is equivalent to 29.5 hours in the field.  Testing for 1000 hours (≈6 weeks) at these conditions would therefore be equal to 3.4 years life at normal use conditions.

(1000 hours X 29.5)/((24 hours/day)(365 days/year))

Accelerated Humidity Testing

Typical failures from accelerated humidity testing are:

  • Oxidation and galvanic corrosion of metals
  • Moisture absorption of plastic packaging materials used in semiconductors
  • Degradation of electronic components
  • Degradation or hermetically sealed products
  • Swelling of materials due to water absorption
  • Loss of material physical strength.
  • Changes in electrical and thermal insulating characteristics
  • Delamination of composite material
  • Degradation of optical element transmission quality

Popular test specifications are:

  • EIA-364-31C Humidity Test
  • IEC 60068-2-30 Damp heat, cyclic
  • IEC 60068-2-38 Composite temperature/humidity cyclic test
  • IEC 60068-2-78 Damp heat, steady state
  • MIL-STD-202, Method 103 Humidity (steady state) & Method 106 Moisture Resistance
  • MIL-STD-810G, Method 507 Humidity
  • MIL-STD-883, Method 1004 Moisture Resistance
  • RTCA/DO-160, Section 6.0 – Humidity
  • SAE J1455 Humidity

Delserro Engineering Solutions, Inc. (DES) has many years of experience performing Accelerated Humidity Testing and can assist customers in setting up a test using the proper test conditions. So, if you do not know what test conditions that you should use or what specification to choose then we will help you! Contact us or call 610.253.6637 to find out what DES can do for you!

The post Accelerated Temperature Humidity Testing Using the Arrhenius-Peck Relationship appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2017/09/accelerated-temperature-humidity-testing-using-the-arrhenius-peck-relationship/feed/ 4
MIL-STD-810: Vibration Testing Category 4 – Truck/Trailer – Secured Cargo https://www.desolutions.com/blog/2016/06/mil-std-810-vibration-testing-category-4-trucktrailer-secured-cargo/ https://www.desolutions.com/blog/2016/06/mil-std-810-vibration-testing-category-4-trucktrailer-secured-cargo/#comments Tue, 28 Jun 2016 17:46:21 +0000 https://www.desolutions.com/blog/?p=2527 This is part two of a series of blog posts concerning the MIL-STD 810 Vibration Section.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test.  For …

Continue reading MIL-STD-810: Vibration Testing Category 4 – Truck/Trailer – Secured Cargo

The post MIL-STD-810: Vibration Testing Category 4 – Truck/Trailer – Secured Cargo appeared first on Delserro Engineering Solutions.

]]>
This is part two of a series of blog posts concerning the MIL-STD 810 Vibration Section.  This blog was written with reference to MIL-STD-810G w/Change 1 dated 15 April 2014.  DES has the experience and expertise to help you determine what profiles are appropriate for your product and to run your MIL-STD-810 vibration test.  For more information, please check out Part 1 – MIL-STD-810 Vibration Testing Overview blog and our Vibration Testing services page.

Category 4 of Method 514.7 Vibration testing details the transportation random vibration environmental conditions from cargo interaction with vehicle suspension and structures with road and surface discontinuities.  “This environment may be divided into two phases, truck transportation over US highways, and mission/field transportation.  Mission/field transportation is further broken down into two-wheeled trailer and wheeled vehicles categories.”

 

Truck Transportation over US Highways Vibration Testing

This vibration test method is used when products or equipment will be transported by large trucks tractor-trailers commonly seen on US highways.  The truck transportation over US highways random vibration profile is designed to simulate 1609 km (1000 miles) on interstate highways.  The random vibration profile along each axis can be seen in the plot below in Figure 1.  The length of this profile is 60 minutes per axis for each 1000 miles of transportation.  For example to simulate 2000 highway miles, the vibration test duration would be 2 hours per axis x 3 axes = 6 hours total.

Vibration Testing MIL-STD-810G w/ Change 1
Figure 1. Figure 514.7C-2 from MIL-STD-810G w/ Change 1

 

Two-wheeled Trailer Vibration Testing

The two wheeled trailer (TWT) random vibration profile is a subcategory under the Two-wheeled trailer and wheeled vehicles category.  This vibration test method is used when products or equipment will be transported by two-wheeled trailers across paved, secondary, and cross-country road surfaces.  The random vibration profile simulates the cargo conditions of a two-wheeled trailer from the forward supply point to the using unit.  The length of travel to be simulated is 51.5 km or 32 miles.  The length of this vibration profile is 32 minutes per axis and can be seen in the plot below in Figure 2.  The vibration test duration would have to be increased accordingly for longer lengths of travel.

MIL-STD-810G vibration test for trailers & wheeled vehicles
Figure 2.  Figure 514.7C from MIL-STD-810G w/ Change 1

A typical two-wheeled trailer is shown in Figure 3.

two wheeled trailer vibration testing
Figure 3. Typical Two Wheeled Trailer

 

Composite Wheeled Vehicle Vibration Testing

The composite wheeled vehicle (CWV) random vibration profile is another subcategory under the Two-wheeled trailer and wheeled vehicles category.  The vibration profile simulates the cargo conditions of transport by trucks or semitrailers across paved, secondary, and cross-country road surfaces.  The random vibration profiles along each axis can be seen below in Figure 4.  The length of travel to be simulated is 800 km (500 mi) from the port staging area to the forward supply point.  The length of this vibration profile is 40 minutes per axis for each 500 miles of transport.

MIL-STD-810G military vehicle testing
Figure 4. Figure 514.7C-4 from MIL-STD-810G w/ Change 1

Composite Wheeled Vehicles are military vehicles.  A typical Composite Wheeled Vehicle is shown in Figure 5.

Composite Wheeled Vehicle Vibration Test
Figure 5. Typical Composite Wheeled Vehicle

The post MIL-STD-810: Vibration Testing Category 4 – Truck/Trailer – Secured Cargo appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2016/06/mil-std-810-vibration-testing-category-4-trucktrailer-secured-cargo/feed/ 2
ASTM D7386-12 Package Testing https://www.desolutions.com/blog/2015/10/astm-d7386-12-package-testing/ https://www.desolutions.com/blog/2015/10/astm-d7386-12-package-testing/#respond Thu, 15 Oct 2015 15:33:34 +0000 https://www.desolutions.com/blog/?p=2368 DES recently performed package testing per ASTM standard, ASTM D7386-12.  The test included shipping vibration testing which was conducted on DES’s Unholtz Dickie ED Shaker System.  ASTM D7386-12 requires packages to withstand random vibration levels of approximately ½ Grms over the frequency range 1 – 200 Hz.  This test is meant to simulate environments these …

Continue reading ASTM D7386-12 Package Testing

The post ASTM D7386-12 Package Testing appeared first on Delserro Engineering Solutions.

]]>

DES recently performed package testing per ASTM standard, ASTM D7386-12.  The test included shipping vibration testing which was conducted on DES’s Unholtz Dickie ED Shaker System.  ASTM D7386-12 requires packages to withstand random vibration levels of approximately ½ Grms over the frequency range 1 – 200 Hz.  This test is meant to simulate environments these packages could see in the field.  It is extremely important for manufacturers to test the effectiveness of their package designs prior to product shipment.  Shipping environments can put a lot of stress on products.

Improper package design can cause products to fail when the customer receives the product.  Environments such as high altitude, temperature, humidity, vibration and shock are common for most packages.  High return rates due to damage during shipment can cripple a company’s bottom line.  Prevent this from happening and send DES your packages to test!

Other package testing standards DES is capable of include (but not limited to):

  • ISTA 1 Series
  • ISTA 2 Series
  • ISTA 3 Series
  • ASTM D3580 Vibration (Vertical Linear Motion) Test of Products
  • ASTM D4169 Performance Testing of Shipping Containers and Systems
  • ASTM D4728 Random Vibration Testing of Shipping Containers
  • ASTM D7386 Performance Testing of Packages for Single Parcel Delivery Systems
  • ASTM D999 Vibration Testing of Shipping Containers

The post ASTM D7386-12 Package Testing appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2015/10/astm-d7386-12-package-testing/feed/ 0
Altitude Testing: Low Pressure Vacuum Chamber https://www.desolutions.com/blog/2015/03/altitude-testing-low-pressure-vacuum-chamber/ https://www.desolutions.com/blog/2015/03/altitude-testing-low-pressure-vacuum-chamber/#comments Wed, 11 Mar 2015 20:53:07 +0000 https://www.desolutions.com/blog/?p=2218 Altitude (Low Pressure) Testing makes use of a vacuum chamber to simulate the effects of high altitude conditions. The pressure inside the altitude chamber can be reduced to correspond to the air pressure at a specific altitude. Products can be placed inside the altitude chamber and tested to determine if they will still function after exposure …

Continue reading Altitude Testing: Low Pressure Vacuum Chamber

The post Altitude Testing: Low Pressure Vacuum Chamber appeared first on Delserro Engineering Solutions.

]]>
Altitude TestAltitude (Low Pressure) Testing makes use of a vacuum chamber to simulate the effects of high altitude conditions. The pressure inside the altitude chamber can be reduced to correspond to the air pressure at a specific altitude. Products can be placed inside the altitude chamber and tested to determine if they will still function after exposure to a given duration at a specified altitude.

Components sealed with internal fluid such as batteries or capacitors may fail or leak during altitude testing because an internal pressure results at rising altitudes as the external pressure is reduced.  It is also possible to power a product during the test to verify that it remains operational during the altitude test. The lower pressure at higher altitudes can reduce the cooling of components which can lead to possible failures. For this type of testing, it is necessary to have power and signal wires that can be fed into the altitude chamber without causing vacuum leaks. DES can provide a generic feed through that can be used for most testing. A custom feed through can also be fabricated if the component to be tested has specialized power or signal cables. It will be necessary to seal these cables to maintain the low pressure.

Altitude testing is normally conducted at room temperature. It is also possible to perform altitude testing at hot and cold temperatures. This will increase the test time as additional time will be required to heat up or cool down the altitude chamber.

Delserro Engineering Solutions, Inc. (DES) has many years of experience performing altitude testing and can assist customers in setting up a test using the proper test conditions. So if you do not know what test conditions that you should use, what specification to choose then we will help you because we are altitude testing experts!

Examples of common altitude testing specifications:

  • IEC 60068-2-13, Low Air Pressure
  • MIL-STD-202, Method 105, Barometric Pressure (Reduced)
  • MIL-STD-810, Method 500, Low Pressure (Altitude)
  • MIL-STD-883, Method 1001, Barometric Pressure, Reduced (Altitude Operation)
  • RTCA/DO-160, Section 4, Temperature and Altitude

The post Altitude Testing: Low Pressure Vacuum Chamber appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2015/03/altitude-testing-low-pressure-vacuum-chamber/feed/ 3
Thermal Shock Testing – Temperature Cycling https://www.desolutions.com/blog/2015/01/thermal-shock-testing-temperature-cycling/ https://www.desolutions.com/blog/2015/01/thermal-shock-testing-temperature-cycling/#respond Thu, 29 Jan 2015 18:49:25 +0000 https://www.desolutions.com/blog/?p=2206 Thermal shock testing also called temperature shock testing or temperature cycling exposes products to alternating low and high air temperatures to accelerate failures caused by repeated temperature variations during normal use conditions. The transition between temperature extremes occurs very rapidly during thermal shock testing, greater than 15 °C per minute. Alternatively, temperature cycle testing uses …

Continue reading Thermal Shock Testing – Temperature Cycling

The post Thermal Shock Testing – Temperature Cycling appeared first on Delserro Engineering Solutions.

]]>
ThermoShockThermal shock testing also called temperature shock testing or temperature cycling exposes products to alternating low and high air temperatures to accelerate failures caused by repeated temperature variations during normal use conditions. The transition between temperature extremes occurs very rapidly during thermal shock testing, greater than 15 °C per minute. Alternatively, temperature cycle testing uses slower rates of change between high and low temperatures. The failure acceleration rate for thermal shock testing is determined by the Coffin-Manson equation as previously discussed in DES’s blog article Temperature Cycling Testing: Coffin-Manson Equation.

Equipment with single or multiple chambers may be used to perform thermal shock testing. When using single chamber thermal shock equipment, the products or samples remain in one chamber and the chamber air temperature is rapidly cooled and heated. This usually results in a slower rate of change in the product response temperature as the entire chamber must be cooled down and heated up. However larger products can be tested in single compartment chambers. Some equipment uses separate hot and cold chambers with an elevator mechanism that transports the products between two or more chambers. This results in a more rapid rate of change in the air temperature. However, there is a limit to the size and weight than can be put in a chamber with an elevator mechanism.  DES has both types of chambers for thermal shock testing.

When performing thermal shock testing, the upper and lower temperatures must be carefully determined. Larger differences between the test chamber temperatures and the product normal use temperatures will result in higher acceleration factors as determined from the Coffin-Manson equation. However, the correct temperature limits must be chosen to not exceed the operating limits or material property limits of the product. For example, an upper temperature that exceeds the melting point of any material in the product would likely result in invalid test failures. It is therefore important that these temperatures be properly measured and monitored during the test through the careful placement of thermocouples on and around the products or samples.

Factors that can influence the test parameters include the thermal mass of the samples, the number of samples and the airflow around the samples that depends on the sample spacing in the chamber. The dwell time at each temperature should be included in the test specification along with the tolerances around the high and low temperatures. Test methods may also specify minimum rates of temperature change.

Products may be powered or unpowered during the thermal shock test. Products that are powered during the test need cables that are long enough to reach outside of the chamber and can fit inside the chamber feed through.

Delserro Engineering Solutions, Inc. (DES) has many years of experience performing thermal shock testing and can assist customers in setting up a test using the proper test conditions. So if you do not know what test conditions that you should use or what specification to choose, then we will help you because we are thermal shock testing experts!

Examples of some common thermal shock test specifications include:

  • MIL-STD-202, Method 107, Thermal Shock
  • MIL-STD-810, Method 503, Temperature Shock
  • MIL-STD-883, Method 1010, Temperature Cycling
  • JESD22-A104D, Temperature Cycling

The post Thermal Shock Testing – Temperature Cycling appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2015/01/thermal-shock-testing-temperature-cycling/feed/ 0
DES Increases Combined Temperature & Vibration Testing Capabilities https://www.desolutions.com/blog/2013/12/vibration-testing-services-combined-temperature/ https://www.desolutions.com/blog/2013/12/vibration-testing-services-combined-temperature/#respond Tue, 17 Dec 2013 15:51:05 +0000 https://www.desolutions.com/blog/?p=1958 DES added another larger AGREE Chamber to perform Combined Temperature and Vibration Testing. This gives DES additional capability to perform combined environmental testing on larger products. DES has performed Combined Temperature and Vibration Testing on car engine sensors, helicopter sensors and outdoor heavy industrial products. Some of the test specifications include MIL-STD-810 and General Motors …

Continue reading DES Increases Combined Temperature & Vibration Testing Capabilities

The post DES Increases Combined Temperature & Vibration Testing Capabilities appeared first on Delserro Engineering Solutions.

]]>
Vibration Testing - Delserro Engineering SolutionsVibration Testing - Delserro Engineering SolutionsDES added another larger AGREE Chamber to perform Combined Temperature and Vibration Testing. This gives DES additional capability to perform combined environmental testing on larger products. DES has performed Combined Temperature and Vibration Testing on car engine sensors, helicopter sensors and outdoor heavy industrial products. Some of the test specifications include MIL-STD-810 and General Motors GMW 3172.

The Equipment Capabilities Are:

  • Combined shock or sinusoidal, random, mixed mode vibration and temperature
  • Temperature range from -80°C to +180°C (-112°F to +356°F)
  • Temperature rate of change up to 20°C/minute
  • 9 cubic feet interior work space, cvo

To learn more about our combined temperature and vibration testing services, visit our website, and be sure to contact us if you would like to find out how our services can work for your products.

The post DES Increases Combined Temperature & Vibration Testing Capabilities appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2013/12/vibration-testing-services-combined-temperature/feed/ 0
Recent Testing Projects https://www.desolutions.com/blog/2013/04/product-testing-update/ https://www.desolutions.com/blog/2013/04/product-testing-update/#respond Wed, 17 Apr 2013 14:27:06 +0000 https://www.desolutions.com/blog/?p=1001 We had many interesting test projects at Delserro Engineering Solutions this past month: We completed a Pyroshock test on our Mechanical Impact Pyroshock Simulator (MIPS) on equipment that will fly into outer space. On the other end of the altitude spectrum, we completed environmental testing of components that will be used in submarines to MIL-E-917.  …

Continue reading Recent Testing Projects

The post Recent Testing Projects appeared first on Delserro Engineering Solutions.

]]>
We had many interesting test projects at Delserro Engineering Solutions this past month:

  • We completed a Pyroshock test on our Mechanical Impact Pyroshock Simulator (MIPS) on equipment that will fly into outer space.
  • On the other end of the altitude spectrum, we completed environmental testing of components that will be used in submarines to MIL-E-917.  MIL-E-917 is a military specification for Naval shipboard electric power equipment.
  • In the middle of the altitude range, we performed combined temperature and vibration testing on sensors that will be used in automobile engines to specification GMW 3172.  GMW 3172 is a General Motors Specification for electronic component durability.

The following is a sample of some additional testing projects we have completed recently:

  • Reliability and HALT tests on a heart assist device

  • Reliability testing on sports equipment used by professional athletes to MIL-STD-810G

  • Vibration testing on a fire safety product to UL specifications

  • Salt fog testing on security equipment to ASTM B117

  • Threshold reliability testing on a medical cart

  • Temperature, humidity, vibration and shock tests on industrial electronic equipment to IEC specifications

  • Thermal cycle testing on commercial lighting equipment

  • HALT testing on military equipment

  • Vibration testing on heavy duty truck equipment to SAE J1455

  • Built a custom life cycle test rig for a medical device used for heart surgery

  • Vibration tests on credit card readers that plug into cell phones

  • Temperature and vibration tests on thermometers used in aircraft

  • High G level vibration tests on transmitters used in rockets

We can’t discuss too many details due to the sensitive nature of the products.

To learn more about our variety of different testing techniques including: vibration testing, stress screening and new product reliability, feel free to contact us.

The post Recent Testing Projects appeared first on Delserro Engineering Solutions.

]]>
https://www.desolutions.com/blog/2013/04/product-testing-update/feed/ 0